A TOPOLOGY ON E-THEORY

JOINT WORK WITH C. SCHAFHAUSER

José Carrión TCU

September 14, 2024

2024 AMS Fall Central Sectional Meeting

The *E*-theory group E(A, B)

- bifunctor from sep. C*-algebras to abelian groups, defined by Connes-Higson (1990)
- stable, homotopy invariant
- has composition product $E(A, B) \times E(B, C) \rightarrow E(A, C)$

Parallel to KK(A, B), but:

• is half-exact; has 6-term exact sequences in each variable (only true for *KK* under nuclearity assumption)

1

Asymptotic morphisms $\varphi: A \xrightarrow{\approx} B$

- family $(\varphi_t)_{t\in[0,\infty)}$ of functions $A\to B$
- $t \mapsto \varphi_t(a)$ is continuous $\forall a \in A$
- asymptotically satisfies properties of *-homomorphisms ($\|\varphi_t(a+\lambda b)-\varphi_t(a)-\lambda\varphi_t(b)\| \to 0$, etc.)

Can define notion of homotopy for asymptotic morphisms.

Definition

- $\cdot [[A, B]] := \{A \xrightarrow{\approx} B\} / \text{homotopy}$
- $E(A, B) := [[SA \otimes \mathcal{K}, SB \otimes \mathcal{K}]]$

Fact: $KK(A, B) \cong E(A, B)$ if A is nuclear.

THE TOPOLOGIES ON KK(A, B), E(A, B)

Some history

- the topology on KK(A, B) can be traced back to Brown-Douglas-Fillmore ('77)
- was first studied in depth by L. Brown ('84), then Salinas ('92), in connection with quasidiagonality
- further developed by Schochet ('01), before being defined in general by Pimsner (unpublished) and Dadarlat ('05)

The "Hausdorffization" of KK(A, B): KL(A, B)

- important in classification theory of nuclear C*-algebras
- first defined by Rørdam, under UCT assumption
- Dadarlat defined in general as $KK(A, B)/\overline{\{0\}}$

MAIN RESULTS

Theorem (C-Schafhauser)

There is a unique second-countable topology on E(A, B) s.t.

$$x_n \to x \in E(A, B) \Leftrightarrow \exists y \in E(A, C(\mathbb{N}^{\dagger}, B)) \text{ s.t.}$$

 $y(n) = x_n \text{ and } y(\infty) = x \ \forall n \in \mathbb{N}$

(known as "Pimsner's condition").

Moreover, the product $E(A, B) \times E(B, C) \rightarrow E(A, C)$ is continous (just like for *KK*).

Define $EL(A, B) := E(A, B)/\overline{\{0\}}$.

Theorem (C-Schafhauser)

EL(A, B) is a separable, totally disconnected, completely metrizable topological group.

Theorem (C-Schafhauser)

$$EL(\varinjlim A_n, B) \cong \varprojlim EL(A_n, B)$$

SO

$$KL(\varinjlim A_n, B) \cong \varprojlim KL(A_n, B)$$

when all A_n are nuclear.

METHODS USED

- Recall: $[[A, B]] := \{A \xrightarrow{\approx} B\}/\text{homotopy}.$
- We study [[A, B]] and define topology on it. Topology on E(A, B) is special case.
- Define and study $[[A, B]]_{Hd}$, the "Hausdorffization" of [[A, B]]. EL(A, B) is special case.
- Main tool: Blackadar's shape theory and its connection with asymptotic morphisms, discovered by Dadarlat ('94).

SHAPE THEORY, SEMIPROJECTIVITY

• General idea: write a C*-algebra A as a direct limit

$$A_1 \xrightarrow{\alpha_1} A_2 \xrightarrow{\alpha_2} \cdots \rightarrow A$$

of "nice" *C**-algebras, studying properties of A determined (up to homotopy equivalence) by the inductive system.

- "Nice": semiprojective, an analog of ANR for topological spaces.
- Not known if every C*-algebra can be written as a limit of semiprojective C*-algebras.
- However: every C*-algebra can be written as such a limit with semiprojective connecting maps (a *shape system*).

The shape category SH of Blackadar-Dadarlat

Objects: shape systems (A_n, α_n)

Morphisms:

Getting $\varphi: A \xrightarrow{\approx} B$ from a morphism in SH:

Theorem (Dadarlat)

Every asymptotic morphism $\varphi: A \xrightarrow{\approx} B$ arises from a morphism of shape systems.

Theorem (C-Schafhauser)

There is an equivalence of categories $SH \xrightarrow{\sim} AM_{Hd}$, where AM_{Hd} is the category whose objects are separable C^* -algebras and where the morphisms between A and B are the elements of $[[A,B]]_{Hd}$.

